Laser-Fusion: Techno-fix to World Energy Crisis?
22 Aug, 2007 12:17 pm
A huge laser is to be constructed at a cost of half a billion Euros in a project rated as "priority" by the European Union and named HiPER. It is intended to use the laser to promote a sustainable nuclear fusion reaction, although it is not thought that a commercial reactor will be built any time soon. There are considerable engineering challenges to be overcome including the development of materials that can withstand the harsh conditions created by such a powerful laser. Accepting that this is a longer-term technology, it doesn't help in the imminent period of fossil fuel depletion, and the problem of maintaining transportation once cheap oil begins to run short remains to be solved.
It is not thought that a commercial reactor will happen any time yet, and I am reminded of the ITER project at Cadarache in France: an experimental thermal fusion reactor project costing ten billion Euros, which it is thought might produce a working reactor in about 60 years, allowing for the various development stages planned. The laser-fusion HiPER project has been earmarked as "priority" by the European Union, and is intended to overtake the US-funded imperative known as the National Ignition Facility (Nif) in Livermore, California. When Nif is built in 2010, physicists are confident that the laser will be sufficiently powerful to start a fusion reaction, and experiments undertaken using underground nuclear explosives in the Nevada desert have provided evidence in regard to just how much energy the laser will need to provide to do this.
Mike Dunne, who is director of the Central Laser Facility in Oxfordshire and where the world's currently most powerful laser, Vulcan, is housed said: "The world is going to take notice when this happens. Politicians are going to look around and say, 'So what are you going to do about it? What is the next step?' This is how to take it from a scientific demonstration to a commercial reality. The trick now is, can we get it to work without throwing a nuclear bomb at the thing?"
Fair enough, but the engineering challenges are huge. Indeed in neither ITER or HiPER have the materials been devised that can withstand either massively energetic neutrons or a mighty laser beam, and without them any commercial development seems unlikely. It is often said that nuclear fusion is an attempt to replicate the processes going on in stars, e.g. the Sun, and yet Earth-bound plasmas are of very low density compared to the huge gravitational pressures in stars which dramatically increase the probability of fusion occurring, e.g. the solar proton-proton cycle which probably could not be reproduced sustainably on Earth.
The world will begin to run short of fossil fuels: first oil, then gas and finally coal, beginning within just a decade for oil. Unless more nuclear fuel is found, nuclear power has only a limited lifetime too, without the development and implementation of breeder technology based on uranium or thorium. The energy clock is ticking away, and I wonder, even if these behemoths can be made to work, not just at all but commercially, how quickly might this be done in reality. 60 years for ITER will almost certainly be too late to come to our aid in the impending energy crisis, and if HiPER has a similar projection in timescale then both may be regarded in the future as white elephants, similar to those architectural follies that pebble-dash the British landscape, which finally served no practical purpose.
Accepting that this is a longer-term technology, it still doesn't help in the imminent period of fossil fuel depletion, and the problem of maintaining transportation once cheap oil begins to run short remains to be solved. It may be that this will prove impossible on a comparable scale to that which we have become accustomed to, and civilization will necessarily re-localise into small communities and local economies, with a far more limited reliance on transport.
Related Reading.
"Laser fusion - the safe, clean way to produce nuclear energy," by James Randerson, The Guardian. http://www.guardian.co.uk/nuclear/article/0,,2091037,00.htmlPER
-
12/12/12
“Peak Oil” is Nonsense… Because There’s Enough Gas to Last 250 Years.
-
05/09/12
Threat of Population Surge to "10 Billion" Espoused in London Theatre.
-
05/09/12
Current Commentary: Energy from Nuclear Fusion – Realities, Prospects and Fantasies?
-
04/05/12
The Oil Industry's Deceitful Promise of American Energy Independence
-
14/02/12
Shaky Foundations for Offshore Wind Farms